
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1
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for Topic-Guided Language Modeling
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Abstract— Variational autoencoder (VAE) is widely used in

tasks of unsupervised text generation due to its potential of

deriving meaningful latent spaces, which, however, often assumes

that the distribution of texts follows a common yet poor-expressed

isotropic Gaussian. In real-life scenarios, sentences with different

semantics may not follow simple isotropic Gaussian. Instead, they

are very likely to follow a more intricate and diverse distribution

due to the inconformity of different topics in texts. Considering

this, we propose a flow-enhanced VAE for topic-guided language

modeling (FET-LM). The proposed FET-LM models topic and

sequence latent separately, and it adopts a normalized flow

composed of householder transformations for sequence posterior

modeling, which can better approximate complex text distribu-

tions. FET-LM further leverages a neural latent topic component

by considering learned sequence knowledge, which not only

eases the burden of learning topic without supervision but also

guides the sequence component to coalesce topic information

during training. To make the generated texts more correlative to

topics, we additionally assign the topic encoder to play the role

of a discriminator. Encouraging results on abundant automatic

metrics and three generation tasks demonstrate that the FET-LM

not only learns interpretable sequence and topic representations

but also is fully capable of generating high-quality paragraphs

that are semantically consistent.

Index Terms— Controllable generation, normalizing flow, text

generation, topic modeling, variational autoencoder (VAE).

NOMENCLATURE

X Unlabeled text training document.
X̂ Topic word corpus output.
Y Reconstructed text document.
xi i th word from X .
x̂ i i th topic word from X̂ .
yi i th word from Y .
z Latent variable of variational autoencoder.
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zt Topic latent variable of FET-LM.
T Latent dimension of zt .
zs Sequence latent variable of FET-LM.
Di i th transformed distribution in the flow.
fi i th flow transformation.
v Householder vector.
H Householder transformation matrix.
fh(i) i th householder flow (HF) transform.
zs(i) i th sequence latent variable in HF.
zi i th latent variable in the flow.
hi i th hidden state of the decoder.
d BoW representation from topic encoder.
c Vocabulary size of training corpus.
bi i th word representation in discriminator.
�i i th topic word output probability.
p✓ (·) Prior parameterized by ✓ .
q�(·) Posterior parameterized by �.

I. INTRODUCTION

A
S DEEP learning methods are gradually introduced to
resolve language modeling problems, language model

(LM) is becoming a key constituent of various natu-
ral language processing (NLP) tasks, such as machine
translation [1], [2], automatic text summarization [3], and dia-
logue system [4], [5]. Text generation as an elementary task
in NLP aims to generate authentic and plausible textual con-
tent that is realistic-looking [6]. Natural language generation
(NLG) is an inherently complex task, which requires abundant
linguistic and domain knowledge at multiple levels, including
syntax, semantics, morphology, phonology, and pragmatics.
In real life, it is easy for us to realize that textual contexts
carry different meanings for different audiences. Therefore,
the automatically generated texts should be tailored to their
specific audiences in terms of appropriateness of content and
terminology use [7], as well as for customized network envi-
ronment and transparency reasons [8]. The goal of controllable
text generation aims at generating coherent and grammatically
correct texts whose attributes can be controlled and/or abide
by user-defined rules, which reflects the particular interests
of system users [9]. The attributes to control range from
being stylistic such as politeness, sentiment, and formality;
demographic attributes of the person writing the text such
as gender and age; content such as information, keywords,
and entities; and ordering of information, events, such as plot
summaries.
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Fig. 1. Proposed FET-LM can learn different topic representations in an
unsupervised manner. We present an example on text style transfer task.
Contiguously generated texts share a similar structure while showing different
sentiments. For instance, there is a changing trend of text sentiment from very
positive (light green) or positive (orange) to negative (red).

We define the task of controllable text generation as finding
a function f to generate sentences that obey certain generation
rules or conditions. This can be formally defined as follows:
given a set of n conditions C = {ci }

n

1 2 C, where C denotes
the condition space. The goal of controllable generation is for-
malized as learning a function f such that f (C) = Z, Z 2 Z .
In general, the controlled sentence generation task can be
divided into two strategies according to the way in which
restrictions are imposed: generation with soft constraint and
hard constraint. First, soft constraint text generation requires
the generated sentences to be semantically similar to the given
constraints (e.g., topic and style), rather than explicitly enforc-
ing certain concepts or rules to appear in the contents. The
mapping function f mentioned above serves as a measurement
to find sentences with the highest semantic similarity with
given constraints [10], [11], [12], [13], [14], [15], [16], [17].
Second, hard constraint focuses on controlling specific tokens
or textual structures (e.g., keywords and sentence length)
during generation and thus is more fine-grained compared with
the soft one. It indicates the compulsive inclusion of given
constraints in the output. Hence, the function f here is a binary
sign on a specified controlling level (e.g., token and syntax)
to eliminate the possibility of producing unqualified features
on such level [18], [19], [20].

However, generating text under specific lexical constraints
is challenging [21]. While hard constraint generative models
handle given conditions with higher proficiency by placing
explicit restrictions on independent attribute controls, they
have difficulty in dealing with several issues, such as unitary
syntax, semantical inconsistency [18], [20], [22], as well
as excessively rigorous model architectures [9]. The other
way around, soft constraint generation can not only produce
authentic texts with certain attributes but also largely benefits
downstream tasks (text summarization [13], style transfer [11],
[14], and so on) from its ability to capture explainable text
representation effectively.

In the past few years, a large number of researchers have
tried to use different methods for controlled text generation
with soft constraints. Intuitively, the target of producing topic-
specified sentences can fall into three courses: topic extraction,
text sequence learning, and joint generation. Therefore, both
topic and sequence models are of great importance in ana-
lyzing and creating controllable texts. Compared with other
approaches to produce textual contents, such as those based on
generative adversarial networks (GANs) [23] or plain recurrent
neural networks (RNNs) [24], variational autoencoder (VAE)
is suitable for text generation with implicit constraints because
its flexible latent spaces capture integral properties of inputs,
such as content styles and high-level linguistic or semantic
features, being beneficial for controllable generation [25].
Besides, the latent knowledge that originates from a VAE can
help mitigate against model misspecification [26], can derive
beneficial hidden knowledge for various domains [27], [28],
and can also enable interesting structures to emerge [12], [29].

However, other problems arise in practice that may limit the
modeling capacity and empirical performance of VAE-based
models. KL collapse is one of the major challenges that
are widely concerned [30]. Various approaches have been
devised to handle this issue, including optimizing decoder
architectures [31], [32], inventing auxiliary objectives [10],
[33], [34], novel encoder–decoder training schedule [35], [36],
and flexible latent code posterior [13], [37]. These methods
generally share the same goal: to impair the ability of a
powerful recurrent decoder and strengthen the expression of
latent space. The second issue associated with a VAE model
to generate topic-specified texts is rooted in the assumption of
its variational distribution, which usually accepts a spherical
Gaussian with diagonal covariance matrix. This leads to the
following.

1) Latent Constraint for the Plain Text VAEs: The true
posterior of the VAE can only be well approximated by
variational inference when it is in the exact same family
as the assumed one [38].

2) Latent Vacancy Dilemma [39] for Controllable Gener-

ation: A text VAE (textVAE) with one monopolistic
latent space is notoriously unsuitable for direct control-
lable generation because of the deficiency in its latent
presentation.

To address such plight, external help from more than one
continuous latent space in VAE was considered [10], but its
training schedule cannot be regarded as end-to-end. As a fixup,
methods that extract both text syntax and topic information
simultaneously were proposed [11], [40], but they suffered
from an oversimplified representation in sequence component
for analogous samples (i.e., isotropic Gaussian). Flexible latent
modeling had also attracted attention [13], [34], whereas they
confused the text syntax knowledge and topic information in
a unified latent space, which makes the models less inter-
pretable.

These methods ignore the nature that topic-specified sen-
tences are not analogous and, thus, their representations are
unlike to fit in an isotropic space, and may confuse topic
and sequence modeling in a holistic continuous space, which
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makes them suffer from poor interpretability and mode col-
lapse issues for controllable generation.

To tackle these puzzles, we propose flow-enhanced VAE
for topic-guided language modeling (FET-LM) in this article.
FET-LM essentially consists of a topic modeling part and
a sequence modeling part, which equip their own contin-
uous latent spaces and are both optimized based on VAE.
In detail, FET-LM discards the spherical Gaussian assumption
of latent sequence component and models its distribution with
a more flexible Gaussian using the householder flow (HF).
In order to maximize the utilization of such powerful sequence
latent, we also propose to condition the topic latent space on
expressive learned sequential information, which acts like a
prophet in the topic learning process and brings progress on
both language and topic learning stages. Moreover, we adjust
the topic encoder as a discriminator to augment the topic
expression in sentences explicitly. Through manipulating the
value of latent variables, our model is also able to produce
textual content in progressively altered sentiments, as shown
in Fig. 1. The sentiment of generated sentences shows a ten-
dency from positive to negative, while these texts remain the
analogical linguistic structure between neighboring manipula-
tions, demonstrating that FET-LM is well designed for textual
representation understanding and unsupervised generation.

Contributions: First, we present FET-LM, a novel approach
to document topic modeling and controllable text generation
based on the VAE model. Second, we clearly separate the
topic modeling and text generation process of the model and
propose to condition the topic latent on flexible sequence latent
distribution parameterized by HF. Third, we adapt a topic
discriminator term to regularize topic learning and further
verify its effectiveness in multitasks. Fourth, the effectiveness
of FET-LM is validated by consistently remarkable results
on language and topic modeling, classification, and three
text generation tasks. Our model reaches the state-of-the-art
performance on text perplexity for better quality of output
content and the topic latent classification accuracy for higher
interpretability of topic learning.

II. BACKGROUNDS

In this section, we first share a brief insight into the infer-
ence and training of the latent variable model (LVM), the
fashion in which FET-LM is constructed. We then go over the
generative process of normalizing flows [41] for modeling an
arbitrarily complicated distribution. Finally, we review related
works of unsupervised controllable generative methods.

A. Variational Inference and Training

In the realm of expectation–maximization (EM) algorithms,
the maximal likelihood estimation (MLE) is of vital impor-
tance, which aims at minimizing the average negative log loss
(NLL) of data X parameterized by ✓

min
✓22

1
n

nX

i=1

� log p✓ (xi ) (1)

where X = [x1, x2, . . . , xn] is described as a set of training
data with length n. However, this probability calculation of

p✓ (xi ) is notoriously intractable and also cannot be differen-
tiated directly. EM algorithms bring an estimation stage to
settle this problem to some extent. In practice, variational
inference introduces a latent variable z and uses the parametric
inference distribution (or posterior distribution) q�(z | X) to
update the intractable likelihood term. Concretely speaking,
the latent variable z is contributed by optimizing the evidence
lower bound (ELBO), which takes both reconstruction loss
and a regularization loss implemented by the Kullback–Leibler
divergence (KLD) into account

log P✓ (X) � Eq�(z|X)

⇥
log p✓ (X | z)]

| {z }
reconstruction term

� DKL
�
q�(z | X)kp✓ (z)

�
| {z }

regularization term

. (2)

This objective directly optimizes the continuous latent space
of VAE, helping the latent variable learn meaningful linguistic
representations and further making it favorable to conduct
controllable generation tasks.

B. Generative Models With Flow

A well-expressive latent variable z is essential to decouple
different but somehow related topics in texts. As a result,
in order to model all the complexities of sequences with
various topics, the latent posterior of text representations
q�(z | X) will necessarily be complex.

A normalizing flow [41] is able to transform a simple distri-
bution (e.g., Gaussian) to a relatively complex one by a chain
of invertible functions. Formally, given a simple distribution
D0 and a variable z0 drawn from it, our goal is to find a
complex distribution DK by sampling a concrete zK from it.
We then define an invertible transformation f (·) whose scope
and range are D0 and Dk , respectively: z0 ⇠ D0, zK = f (z0),
where the bijection function f (·) can be decomposed as a set
of bijection functions { fk}

K

k=1 of the same kind. By stacking
them into a chain and acting on z0, altogether, they play the
same role as f (·) does. We can call it a normalizing flow on
distribution D0.

The essence of the flow-based generative process is the
constant change of the input’s coordinate system. Hence,
we only need a Jacobian determinant to be multiplied to every
point from the distribution D0 to distribution DK

Dk = D0

����det
@ f

@ z0

���� (3)

and the general formula for the kth transformation is
the absolute determinant of Jacobian matrix at that step:
| det(@ fk/@ zk�1)|. As we specify that the generative model fol-
lows the paradigm of a VAE, the ELBO of a VAE-based gen-
erative model derived previously in (2) additionally requires a
sum of the absolute determinant of the Jacobian matrix, that
is:

log P✓ (X) � Eq�(zK |X)

⇥
log(p✓ (X | zK ))

⇤

� DKL(q�(z0 | X)kp✓ (zK )) +

KX

k=1

log
����det

@ fk

@ zk�1

����

(4)
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and the original latent code z is substituted by zK here, which
is more competent to approximate the true distribution of data.

C. Related Work

The objectives of self-supervised models with a soft con-
straint can be listed from three aspects: topic representation
extraction, text syntax learning, and integrative generation. For
the first target, learning topic information in sentences aims
at finding a low-dimensional representation, which consists
of topic explanatory and generative factors of the observed
texts. Effective topic models, such as latent Dirichlet allocation
(LDA) [42] as well as its nonparametric Bayesian general-
izations [43], are quite appropriate for extracting topics from
document-level texts and then map them to a latent space.
Their modeling power has been further boosted by bring-
ing in multilayer deep neural networks [44]. These methods
typically ignore words’ sequential orders [45] and feed texts
in the bag-of-word (BoW) manner. Unlike previous methods,
Wang et al. [46] proposed a customized convolutional operator
and probabilistic pooling for topic modeling, which takes
word order into consideration and resoundingly catches topic
knowledge as well as local words dependencies. However,
their model has difficulty in capturing reasonable text sequence
information and producing realistic textual content.

When digging into the sequence modeling method, a big
question associated with VAE-based controllable LMs is how
to alleviate KLD collapse problem [30] and meanwhile inte-
grate learned semantic information with proper syntax rules
to generate plausible texts. KL vanishing problem is caused
by the strong and obligate autoregressive network for text
generation, which has become an important open challenge
in the NLP field. There mainly exist two kinds of solutions
to this problem. The first kind tackles this problem mostly by
modifying model architectures to weaken the context modeling
ability of decoders, for instance, word dropout trick before
feeding to the decoder [30] and nonautoregressive networks
(e.g., convolutional neural networks) as the decoder [47],
[48]. The second category is to modify the loss functions of
VAE-based LMs, for example, various KL annealings to fully
leverage the latent information [30], [35], auxiliary loss terms
to compensate the KL vanishing [10], [33], [49], or improved
KL distance metrics for network optimization [28], [50]. The
main idea behind all these methods is the same, i.e., to force
the models to be less dependent on autoregressive RNNs so
as to make latent information weights more on balancing sen-
tence features. Furthermore, incorporating topic meanings with
the component for syntax modeling has been greatly explored
in recent years. Das et al. [51] put forward a Gauss-based
topic model and assumed that each word was generated from a
Gaussian distribution. Following this thought, Xiao et al. [10]
employed a similar topic module but with Dirichlet distribu-
tion. Despite their success, these learning algorithms require
multistage sampling or inference, so they cannot be counted
as an end-to-end mode. Wang et al. [13] proposed a series of
VAE works [12], [13], in which they used either mixture-of-
experts or flow-based decoder for text distribution modeling.

However, they mixed sequence and topic representation at
the model input, making the unsupervised models unclear to
explain. Also, similar model structures are also observed for
controllable generation in various domains [28], [29]. As a
remedy, Tang et al. [11] proposed to adopt topic and sequence
models that followed multinominal Gaussian, and produced
controllable word sequences by concatenating latent codes.
Nevertheless, there are some drawbacks to these methods.
For example, the restricted inference assumption in previous
approaches put the learning process of texts with different
topics on an equal footing, which is illogical for topic-specified
text modeling. They trained both components from the scratch,
which increased the difficulty for topic module to learn the
semantic messages. Rezaee and Ferraro [17] came up with a
novel variational topic LM. They first masked word embedding
to label word semantics discretely and then constructed a con-
ditional LM to generate controllable texts. Despite its refined
architecture, the statistical results were not fairly satisfactory.
Most lately, Dai et al. [34] made the latent space of VAE
as a complex Riemannian manifold with learnable prior and
posterior to enhance VAE’s expression capability.

The model proposed in this article is different from
the existing works. We explicitly split FET-LM into topic
and sequence modeling sections with latent conditionality.
We adopt HF to depict the complex distribution of texts with
certain topics. Besides, our method leverages a discriminator
with BoW input, which avoids a latent code collapse problem
and heightens the overall model capacity. Finally, all elements
in FET-LM can be trained end-to-end.

III. FET-LM METHODOLOGY

FET-LM essentially consists of a topic modeling component
and a sequence modeling component. The topic modeling part
intends to learn interpretable latent codes of topics, while
the sequential strategy is built for both modeling plausible
sequence knowledge and composing learned topic latent into
the generative process. The model structure is shown in Fig. 2
and its corresponding graphic is shown in Fig. 3(b).

A. Topic Modeling Component

Similar to previous works on topic models, we transform
discrete sentences into a BoW representation in the first place.
We define c to be the vocabulary size and d 2 Zc

+
as the BoW

representation of a document X = [x1, x2, . . . , xn] with length
n, which indicates that every document has c elements with
nonnegative count. We assume that there are T potential topics
in given documents and introduce the topic latent variable
zt following a T -dimensional Dirichlet distribution. Resemble
in LDA, each dimension of zt hypothetically represents one
topic. Intuitively, learning topic information from scratch is
much harder than foreseeing some knowledge about the given
document. As a result, we leak the posterior information of zs

from the sequence component to the topic model in order to
generate zt , which will be described in detail in Section III-B.
The overall process above is depicted by the upper part of
Fig. 2. Concretely, for the conditional prior modeling of zt ,
we have the following.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on March 09,2023 at 04:20:31 UTC from IEEE Xplore.  Restrictions apply. 



TU et al.: FLOW-ENHANCED VARIATIONAL AUTOENCODER FOR TOPIC-GUIDED LANGUAGE MODELING 5

Fig. 2. Detailed explanation of the proposed FET-LM model. The overall architecture observes the encoder–decoder framework, which leverages two
separate VAE models for topic and sequence modeling with the flow module and discriminator loss. These settings are in favor of learning topic information
well-grounded and producing controllable texts with high qualities at the same time.

Fig. 3. Graphic model of (a) VAE and (b) FET-LM. Observed variables are
in gray, while unseen variables are in white. Solid lines represent the inference
process, and dashed lines work during the training process. The plain VAE
equips one continuous hidden space z, while FET-LM separates topic and
sequence latent spaces as zt , zs with conditional assumption between them.

1) Draw zs from the sequence prior: zs ⇠ N (0, I ).
2) Draw topic prior conditioned on zs as zt ⇠ p(zt | zs).

Also, accordingly, the posterior of zt is parameterized as
follows.

1) Draw the sequence posterior zs ⇠ q(zs | X).
2) Draw the topic posterior zt ⇠ q(zt | X, zs).

Then, the generative process of our topic part can be accom-
plished via the output probability of each word token, which
can be specified as drawing zt from its learned distribution and
then generates the output probability of topic words from topic
decoder Dec(·): [p(x̂1), . . . , p(x̂m)] = Dec(zt). In detail, zt

follows Dirichlet and is modeled as Dir(BN(exp(zs))), where
zs ⇠ q(zs | X), BN and Dir are the batch normalization
and Dirichlet function, respectively, and exp(·) is an expo-
nential function to maintain the nonnegativity of the input
Dirichlet center. Topic decoder Dec is built as linear layers:
Dec(zt) = Softmax[BN(Wzt

zt + bzt
)], Softmax(·) represents

Softmax function, and Wzt
and bzt

are learnable weights and
bias, respectively.

The recovery process of topic model can be specified as

p(X̂) =

Z

zt

Z

zs

p(zt)

√
nY

i=1

p(x̂ i | zt)p(zt | zs)p(zs)

!

d zsd zt

=

Z

zt

Z

zs

p(X̂, zs, zt)d zsd zt . (5)

Since the neural topic component is constructed in the
fashion of a VAE, the ELBO of this component is in the
following form:

LT = Eq(zs |X)q(zt |X,zs)

⇥
log(p(X̂ | zt , zs))

⇤

� Eq(zs |X)

⇥
DKL(q(zt | X, zs)kp(zt | zs))

⇤
(6)

with q(zt | X, zs) and p(zt | zs)) to be the posterior and
conditional prior of zt , respectively.

B. Sequence Modeling Component

The sequential information of sentences reveals the syn-
tax structure of them. Since words in sentences are serially
correlated, we thus construct a textVAE to generate words
sequentially. A sequence modeling component in controllable
LMs should not only be able to produce reasonable sentences
but becomingly compose topic latent to its generating process.
We assume that the sequence encoder infers a sequence latent
code zs, so the sequence decoder can generate topic-correlated
texts via integrating learned topic latent codes and sequence
latent codes. Specifically, a continuous variable zs is first
drawn from its prior distribution p(zs). Since the semantic
information associated with sentences substantially contains
different subgroups (e.g., topics), we believe that the distribu-
tion of topic-specified texts is hard to be accurately captured
by a standard VAE, which simply imposes an independent
multivariate Gaussian prior on latent zs. To fulfill the goal
of generating semantically related texts, we also need to
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distinguish semantic expressions that are intrinsically corre-
lated in real circumstances. Intuitively, this requires a well-
expressive input of sentence decoder, and we hence make the
hypothesis that zs is sampled from a complex Gaussian prior
with the full covariance matrix. zs with a delicately designed
modeling approach will not be directly used in producing
topic-dependent texts. By sharing posterior knowledge with
topic latent variable zt as well as composing with it for decoder
input, the backpropagation technique can update zs in a trend
of leveraging topic information into its representations. Thus,
FET-LM is promising to fulfill the goal of creating controllable
sentences with both zs and zt .

In detail, we adopt a bidirectional encoder to encode the
words and take the last hidden state of the encoder (denoted
as hn) to fit a Gaussian mean and log variance, respectively.
Here, we initialize the prior of zs with zero mean and all one
in the covariance matrix, which is helpful to stably train a deep
generative flow for posterior approximation. As for decoder,
we obtain the overall latent code z by concatenating zt and
zs: z = [zt , zs], and the decoder is utilized to reconstruct
document words with latent z as input. For a reconstructed
document Y output from the proposed method, its probability
likelihood can be calculated as follows:

p(Y | z) =

nY

i=1

p(yi | y1:i�1, z) =

nY

i=1

p(yi | hi , z) (7)

where hi is the i th hidden state of the decoder RNN that
satisfies hi = Decoder(hi�1, xi�1, z). Overall, the ELBO of
our customized sequence VAE is

LS = Eq(zt ,zs |X)

⇥
log(p(Y | zt , zs))

⇤

� DKL(q(zs | X)kp(zs)). (8)

Here, we have q(zs | X) and p(zs) to be the posterior and
prior of zs, respectively.

C. BoW Discriminator

Though the decoder of the sequence part in FET-LM
composes both semantic and sequential features by sharing
partial parameters for p(zt) modeling, there still stands a
chance that the sequence part is not able to fully leverage zt .
Following [11], we introduce a topic discriminator to aggregate
the semantic expression of generated sentences. Our goal is to
compel the model to generate topic-coherent texts with zt .
In another word, the more alike of topic distribution between
generated texts and original texts, the better it achieves our
expectations. To do so, we empower the BoW encoder with the
role of a discriminator. Since we are going to improve the topic
coherence of sentences generated from the sequence decoder,
the output of the sequence modeling component should be
the input of our discriminator. However, the discrete property
of generated texts is not friendly with the backpropagation
process of the discriminator. Thus, we resort to the Gumbel-
Softmax [52] distribution to approximate discrete samples.
Specifically, we obtain the distribution of the whole corpus
p(Y | zt , zs) = [�1, �2, . . . ,�m] with �i to be the output

probability of the i th topic word at any time step; then,
we model word representations from the discriminator

bi =
exp(log(�i ) + g1)/⌧P

c

j=1 exp
�
log

�
� j

�
+ g2

�
/⌧

(9)

where g1 and g2 are drawn from the Gumbel(0, 1) distribution,
c is the vocabulary size and parameter ⌧ is manually selected
in advance. Unlike discriminator in [11], which utilized the
word embedding to approximate output and forced the hidden
size of word embedding equal to the topic encoder size,
we utilize the topic model embedding in this process. As a
result, the i th reconstructed topic word in our implementation
is approximated as: ŷi = b

T

i
Wbow, where Wbow is the trainable

BoW embedding in the topic encoder.

D. HF for Sequence Posterior Approximation

Householder transformation (or elementary reflection)
[53] is an orthogonal and volume-preserving transforma-
tion that transforms the n-dimensional vector to any other
n-dimensional vectors. A normalizing flow consisting of such
transformation is known as HF [54], [55]. When applying to
distribution estimation, it is not only capable of generating
more flexible sequence posteriors due to its nature as a flow but
significantly simplifies the objective of flow-based variational
methods because there stands log | det(@ Hk zk�1/@ zk�1)| =

0 for k 2 [1, K ]. By starting from a simple posterior with the
full covariance matrix zs(0) from sequence encoder, a K -layer
HF is inflicted to it in order to better approximate the true
posterior that befits various topics. The loss function of our
sequence part in (8) should be modified as

Eq(zt ,zs(0)|X)

⇥
log(p(X | zt , zs(K )))

⇤

� DKL(q(zs(0) | X)kp(zs(K ))). (10)

Since HF is volume-preserving [41], the type of distribution
will not change after the transformation. In the case of
assuming that sequence prior follows a multivariate Gaussian,
distribution after transformation is still a Gaussian but crucially
with an intricate full covariance matrix. This property can
approximate more complex sequence posterior with different
semantics than isotropic Gaussian. Note that, though we only
use normalizing flow to directly produce sequence posterior,
the approximation method is also conducive to the topic latent
zt due to its conditional assumption on zs.

Distinct from TGVAE [13], which also utilizes HF but
does not divide topic and sequence modeling and requires the
Gaussian mixture model (GMM) to parameterize the hidden
spaces, our method is more simple and effective to employ
(check Section IV for experimental results).

E. Training Losses

For both the topic and sequence modeling components,
we adopt AutoEncoding variation Bayes (AEVB) to achieve
posterior inference and parameter learning. As a result, LS and
LT consist of the reconstruction term and regularization term
concerning zs and zt , respectively. Then, the training objective
for the model is LVAE = LS +LT , whose regularization terms
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are corelative and can be summed to a unified KLD to form
the regularization term of a holistic VAE

LVAE = LS + LT

= Eq(zt ,zs(0)|X)

⇥
log(p(Y | zt , zs(K )))

⇤

+ Eq(zs(0)|X)q(zt |X,zs(0))

⇥
log(p(X̂ | zt , zs(K )))

⇤

� DKL(q(zt , zs(0) | X)kp(zt , zs(K )))| {z }
regularization term

(11)

where zs(k) represents the sequence latent variable after the
kth householder transformation as mentioned in Section III-D.
The goal of making the topic encoder as a discriminator is to
narrow the gap of semantics between the original texts and
generated texts. This idea can be approximated by the log-
likelihood maximization of zt

LD = Ep(zs)p(zt )

⇥
log(q(zt | Y))

⇤
(12)

where Y is the generated sentences from the sequence decoder.
Finally, the whole loss function of the FET-LM model is
designed as: L = LVAE + �DLD .

IV. EXPERIMENT AND RESULTS

We evaluated FET-LM from two general perspectives: lan-
guage modeling ability and topic coherence, which can well
and truly reveal both the generation capacity and topic learning
ability of the proposed model. We conducted several experi-
ments on multiple datasets and compared them with numerous
baselines. Specifically, we used both text perplexity (PPL)
and BLEU-based metrics [56] for text modeling evaluation,
while topic coherence was evaluated through normalized PMI
(NPMI) [57] and a supervised classification task quantitatively.
We also visualized the distribution cluster of learned sentiment
in our topic latent code. Finally, from the perspective of text
generation, we exhibited controllable texts, latent interpolated
generation, and text style transfer task to visually illustrate
the generation capacity of FET-LM. Our code is available at
https://github.com/ImKeTT/FET-LM.

A. Datasets and Model Details

Empirical studies of the text modeling performance were
performed on four text datasets: APNEWS,1 IMDB [58],
BNC [59], and PTB [60]. For these four corpora, we first
used SpaCy2 to tokenize the sentences and lowercase all
word tokens. Then, we followed previous works [11], [13],
[17] to filter out the words whose occurrence frequency was
less than 2 times (8 for BNC to accelerate the training
procedure). For the evaluation of topic learning, we added
Yelp153 dataset. With sentiment labels, Yelp15 allows us
to conduct classification and visualization of learned latent
distributions.

For the purpose of keeping the topic component focusing on
valuable words that represent different topics, subtracting a set
of specific words (e.g., stop words, rare words, and frequent

1https://www.ap.org/en-gb/
2https://spacy.io
3https://www.yelp.com/dataset

words) from the original corpus as the input of the topic model
is widely accepted. This process can make our topic model
more reliable. In our system, we dealt with this situation in a
slightly different way. We still input the whole corpus to the
topic encoder, but additionally added a postprocessing stage
to eliminate specific words: counted all of them to zero for
BoW import. In addition, for the input of topic modeling part,
we moved out stop words in every document and removed the
top 0.3% most frequent words as well as words that appear
less than 100 documents. The summarized statistics of all five
datasets can be found in Table I.

Regarding training details, we fixed a maximum vocabulary
size of 40k and a maximum length of 80 words across
the first four text datasets (APNEWS, IMDB, BNC, and
PTB). Considering the relatively longer text length and much
bigger vocabulary size of Yelp15, we followed [11] and set
the maximum vocabulary size to 20k with a maximum text
length of 150 to expedite the training process. Pretrained word
vectors from GloVe [61] were first utilized to initialize word
embedding with a dimension of 200, which was shared by both
topic and sequence modeling components. The encoder of the
topic modeling component follows the BoW manner, which
was implemented with a two-layer feedforward network with
200 hidden units and softplus activation function. We set the
dimension of zt to 20. The sequence encoder was a bidirec-
tional LSTM [62] with hidden size 300 for both directions, and
the decoder was a plain LSTM with hidden size 300. Also,
the size of sequence latent zs was 32. We used a batch size of
32 and Adam [63] optimizer with a learning rate of 10�4 for
model training. The training epoch number was set to 80 with
2000 steps per epoch for datasets except for BNC (100 epochs)
and IMDB (60 epochs). The weight decay rate was set to 10�5

with a dropout ratio of 0.2 for all RNNs. To avoid gradient
explosion, we set the max clip norm of the gradient to 5.0.
Moreover, to take full advantage of learned latent knowledge,
cyclical schedule [35] with four cycles through all training
epochs was utilized for KL annealing. Finally, we set the
weight of discriminator loss to 0.5 through ablation studies.
For HF implementation, we followed the experiment setting
from [54]. Finally, the parameter ⌧ in the BoW discriminator
was 0.02 during training and 1.0 at inference. One NVIDIA
GeForce 1080Ti GPU was used for training.

B. Language Modeling Evaluation

FET-LM is intrinsically an LM. Thus, PPL and
BLEU-related metrics for text quality measurement are
suitable to evaluate model capability.

1) Text Quality Analysis: We quantified the quality of
generated sentences in terms of text PPL, which reveals the
model confidence of generating a sequence of words. The
lower the PPL of a sentence is, the higher quality this sentence
has. Specifically, we estimated PPL via the log-likelihood loss
from the sequence decoder and normalized it by generated
word number. To take a closer look at the role the BoW
discriminator plays, we chose models with or without it in
Table II. Also, we find that the HF is contributing to PPL
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TABLE I
STATISTICAL SUMMARY OF FIVE DATASETS USED IN THIS ARTICLE. SM VOC AND TM VOC REPRESENT THE VOCABULARY SIZE OF SEQUENCE MODEL

AND TOPIC MODEL, RESPECTIVELY

TABLE II
TEXT QUALITY ANALYSIS IN TERMS OF TEXT PERPLEXITY (PPL). ALL

TOPIC LMS REMAIN THE SAME TOPIC LATENT SIZE
(IF AVAILABLE) OF 50

metric, so we present PPL values of FET-LM with different
layer settings on two representative corpora in Table III.

C. Baseline Models

In our experiments, we compared against two categories
of baselines that mostly consider both topic and sequence
information into generation. Five baselines belong to the
LM-based approaches.

1) LSTM + LDA fuses the topic information from a
pretrained LDA model with the hidden states of LSTM.

2) Topic-RNN [15] coalesces the topic distribution learned
from an LDA component using the gate mechanism and
trains jointly with the LM.

3) TDLM [57] employs a convolutional network for the
topic model and also concatenates it with hidden states
of RNN.

4) rGBN-RNN [16] brings a gamma belief network as a
topic model and infuses learned topic information into
RNN to improve model capability.

As for VAE-based models, we have the following
baselines.

TABLE III
PPL OF OUR MODELS ON TEST SET WITH VARIOUS NUMBER OF FLOW

LAYERS (REPRESENTED BY F) ON TWO DATASETS

1) LSTM VAE [30] is a plain textVAE model whose
encoder and decoder are implemented with LSTM.

2) VAE + HF is built based on plain textVAE with HF to
estimate its latent distribution.

3) TCNLM [12] utilizes a neural topic model based on
the VAE paradigm and a multiple experts network to
generate texts.

4) TGVAE [13] consists of the same topic model of
TCNLM, but a textVAE with Gaussian mixture prior
and an HF to approximate its posterior.

5) DVAE [10] incorporates a simple Dirichlet latent topic
model to improve textVAE.

6) TATGM [11] applies multivariant Gaussian for both
topic and sequence latent codes and concatenates them
for sentence generation.

7) VRTM [17] blends RNN hidden state with a binary
vector sign to judge topic expression.

8) iVAE [25] parameterizes hidden space with sample
method and replaces KLD with mutual information.

9) APo-VAE [34] makes the latent space a Riemannian
manifold with learnable prior and posterior.

10) DPrior [64] utilizes discrete latent prior for controllable
text generation with annotations.

We took baseline results from the original papers with
the same topic number to our setup (if available) for fair-
ness. According to the results in both tables, first, the pro-
posed method takes up the top positions compared with
best-performed baselines, especially on APNEWS and IMDB
corpus. FET-LM precedes presently the state-of-the-art perfor-
mance from [16] six and over ten points, respectively. These
results demonstrate that FET-LM is fairly designed to fulfill the
principle goal of an LM. Second, HF in sequence latent level
decreases the PPL value by over ten absolute points on both
IMDB and PTB. Besides, with the increase of flow layers, the
PPL value gradually reduces. Third, FET-LM without flow can
still reach competitive PPL results compared with baselines,
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TABLE IV
TEXT QUALITY ANALYSIS IN TERMS OF TEST-BLEU AND BLEU-F1 SCORE. T IS THE TOPIC NUMBER AND F IS THE FLOW LAYER NUMBER

which yields convincing effectiveness of our model design.
Finally, models with the BoW discriminator reach a lower PPL
in major cases, which is ascribed to the resolute guidance of
our implemented discriminator.

1) Text Relevance and Diversity Analysis: The BLEU-
related calculation is based on the n-gram language paradigm,
by seeking for identical strings between reference and gen-
erated texts, it gives the matching precision as a similarity
rating of two sentences. Following previous works [13], [16],
we used test-BLEU to evaluate the quality of generated
sentences with texts from the test sets as a reference, higher the
test-BLEU score is, texts with more realistic-looking content
are provided. Besides, we use self -BLEU to evaluate the diver-
sity of generated contents [65]. Since there intrinsically exists
a tradeoff between text quality and text diversity, we employ
that the BLEU-F1 score involves text quality and diversity
following [66]:

BLEU-F1 =
2 ⇥ test-BLEU ⇥ (1 � self-BLEU)

test-BLEU + (1 � self-BLEU)
. (13)

For the baseline methods, three VAE-based LMs were
selected, among which VAE + HF and TGVAE are two
systems utilizing HF like the proposed FET-LM. To fully
explore the model capacities under different topic dimen-
sion settings, we chose to vary the model’s topic number
from 10 to 50. Since BLEU-related metrics require specific
word output and comparison, we believe that the discriminator
can play a more important role in this process because it
is optimized on the word token level, and we report model
performances with or without it. Formally, we carried out
all the BLEU-related experiments using the benchmark tool
Texygen [65]. From the test-BLEU and BLEU-F1 scores in
Table IV, we could see that our FET-LM model is supe-
rior to the baselines in terms of BLEU-F1 and test-BLEU

in most cases, and the discriminator is a strong performer
in improving text quality (higher test-BLEU values in all
circumstances). When the flow layer is selected to 10, our
model generally performs the best, so the flow layer number
is 10 for the rest experiments. Moreover, values of FET-LM
on BLEU-F1 change much smoother than others from B-
2 to B-3. One possible reason is that FET-LM produces more
coherent texts (with lower loss in n-gram LMs) than other
baselines do.

D. Topic Learning Evaluation

Text quality indicators like PPL are not necessarily relevant
to topic modeling ability [67]. Hence, experiments were fur-
ther conducted to verify the topic modeling ability of FET-LM.

1) NPMI Evaluation: NPMI score measures the coher-
ence of generated topic-related words. Following [57], n was
selected from 5, 10, 15, and 20. Then, we averaged values
across different n values as the NPMI score. The PMI score
is calculated based on distinguishing representative words
from different topics, which not only requires words from an
appointed topic but needs words from other topics as intruders.
Specifically, we fixed the value of each latent dimension of
zs and zt to a preset number successively while others to
0 and then output every n most typical words from the topic
modeling part. We sampled a topic word from another topic
and appended it to the previously obtained n topic words to
complete the intrusion process.

According to our preceding experimental results, we added
or discarded the BoW discriminator and assigned ten flow
layers to check the model performance. As for NPMI scores
of baselines, we took all the statistics from [11] and trained
an LDA model with 20 topics over PTB dataset for the
NPMI calculation. Based on the overall results of NPMI
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TABLE V
NPMI SCORES FOR TOPIC COHERENCE EVALUATION

Fig. 4. Classification accuracy on Yelp15. * or ˆ represent results inferred
from latent codes of the topic part and sequence part (or structural part in
TATGM), respectively. The topic latent zt can learn more topic knowledge
than sequence latent zs solely (i.e., higher accuracy). The discriminator is also
helpful in performing the task well.

shown in Table V, the BoW discriminator is designed to
enhance the topic learning capacity of FET-LM, and as a
result, its impact on NPMI calculation is positive. FET-LM
performs well for achieving the highest NPMI score over three
datasets (BNC, PTB, and Yelp15) and being suboptimal on
APNEWS.

Though the primary goal of the proposed model is to
generate sentences with attributes instead of topic words, our
model exhibits competitive topic learning capacity compared
with baselines. As a result, the topic modeling component as
an independent and qualified topic model is regarded as a side
product of FET-LM.

2) Latent Codes Classification: Can the latent representa-
tions of FET-LM really distinguish different topics or senti-
ments? To further verify the topic learning ability of FET-LM,
we conducted a supervised classification task on the Yelp15
dataset, each sentence from which owns a semantic label.
We first obtained latent codes from the topic component and
sequence component with sampled 2000 training data using
a well-trained ten-flow-layer FET-LM and then constructed a
two-layer linear feedforward network with softmax function
as a classifier. Finally, we tested the performance of the
classification model on the validation set. The higher the

TABLE VI
TOPIC WORD GENERATION OF TOP-5 REPRESENTATIVE WORDS FROM

FIVE LEARNED TOPICS IN FET-LM

accuracy is, the stronger the topic extraction power a model
possesses. In the case of supervised latent classification task,
we made zs, zt , and z = [zs, zt ] as input severally, and
the statistical results are presented in Fig. 4. We can get the
following conclusions.

1) The classification task shows the overall superiority of
FET-LM on topic learning. For instance, the best and
the worst classification accuracy of FET-LM come from
intact z = [zs, zt ] (Acc. = 55.97%) and single zs

(Acc. = 52.73%), respectively. They are superior to the
currently best-performed TATGM by almost 10% and
over 6%.

2) No matter with or without BoW discriminator, the test
accuracy of topic latent zt as input exceeds sequence
latent variable zs as input, which exactly manifests
that zt from topic component could learn more topic
knowledge than zs does.

3) Models with the BoW discriminator reach a higher
classification accuracy than models without it, indicating
that the BoW discriminator helps latent variables to
recognize different topics efficiently.

3) Topic Latent Visualization: Intuitively, the strong topic
learning ability of FET-LM can also be captured by visualizing
learned topic distribution. We randomly sampled 2000 exam-
ples from Yelp15 with labels and applied t-SNE [68] to
visualize the distribution of learned zt . In the clustering setting,
texts with different scores were roughly grouped into negative
(cyan) or positive (orange) sentiment. Note that, rating labels
in Yelp15 are considered to be continuous, and it is involuntary
to say that they are possibly entangled at the edge. Still,
the separated sentimental distribution can be identified by the
well-educated zt in our model as shown in Fig. 5, which
demonstrates a structured latent pattern of zt and explains why
FET-LM was yielding a decent classification performance.
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TABLE VII
CONTROLLABLE TEXT GENERATION ON FIVE DATASETS

TABLE VIII
TEXT STYLE TRANSFER GENERATION FROM NEGATIVE TO POSITIVE BY TRAVERSING LEARNED TOPIC REPRESENTATION ON YELP15

Fig. 5. Visualization of learned topic distribution from zt on Yelp15 with
sentiment labels. A separation between positive and negative sentiment can
be captured by zt from the clustering.

E. Guided Text Generation

To demonstrate that the proposed FET-LM is able to gen-
erate controllable sentences, we conduct three downstream

generation tasks: 1) topic word generation and controllable text
generation in an unsupervised manner; 2) text style transfer;
and 3) sentence interpolated generation to verify its capacities.

For unsupervised controllable generation, we selected repre-
sentative topic words (Table VI) and topic-specified sentences
(Table VII) from our trained model. Since every dimension
of latent codes in FET-LM represents a topic or a sentiment
ideally, we can easily manipulate the values of the topic and
sequence latent variables to generate topic words or texts with
different attributes. The model input is an one-hot zt and
zs ⇠ N (0, I ) for latent spaces. We then feed both variables
into the sequence decoder for controllable text generation
and into the topic decoder for topic word production. From
Tables VI and VII, it is clear that FET-LM can produce words
belonging to certain topics or generates sentences with diverse
topics on different corpora.

For text style transfer in Table VIII, the model input is
zs with one certain dimension (e.g., the 1st) to be a preset
number (e.g., n) and others to be 0, and the topic latent vector
is obtained by the conditional assumption based on sequence
latent. The output is the corresponding sentence. We do the
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TABLE IX
INTERPOLATED SENTENCES ON IMDB

TABLE X
INTERPOLATED SENTENCES ON APNEWS

style transfer task by traversing n in a range of numbers.
As shown in Table VIII, there is a sentiment transformation
from negative to positive by traversing latent codes. Adjacent
sentences share a similar context structure while gradually
converting sentiment, that is to say, by manipulating expres-
sive learned latent spaces, we could obtain effective implicit
guidance for context generation while maintaining a consistent
structure.

For the interpolated generation in Tables IX and X, the
model input is two sentences from the test set (Ori. 1 and
Ori. 2) and the output is a set of sentences with their latent
vectors interpolated from latent codes from Ori. 1 to Ori. 2.
We took FET-LM trained on IMDB as well as APNEWS for
this task. We first randomly sampled two sentences from the
test corpus and fed them to our FET-LM, then employed linear
interpolation between the latent values inferred from given
content pairs, and finally generated texts from manipulated
latent codes. We can observe from the results: the latent
interpolation task makes clear what FET-LM has learned
for text generation from its latent space. In detail, we take
the generated sentences from Table IX as an example, and
Ori. 1 and Ori. 2 have distinct sentiment polarity (positive for
Ori. 1, while negative for Ori. 2). Rec. 1 reconstructed from
Ori. 1 maintains the positive sentiment and some feature words
or symbols (e.g., word “movie,” exclamation symbol). Simi-
larly, Rec. 2 reserves doubt and negative sentiment, as well
as the major structure in Ori. 2 (e.g., the statement “n’t,” the
word “believe”). During the interpolation, the semantic feature

alters from the second interpolated text with a distinctive
word “dark-making,” while sentence syntax structure changes
progressively. As a result, we could say that the latent codes
of FET-LM have properly learned text structural information
as well as semantic meanings from input sentences.

V. CONCLUSION

Generating topic-specified texts is an important, ambitious,
and well-identified challenge in the literature. In this article,
we propose a flow-enhanced VAE FET-LM for topic-guided
language modeling, which controls text generation by incor-
porating a VAE-based neural sequence model and a neural
topic model parameterized by the Dirichlet distribution. For
scalable reasoning, we developed autoencoding variational
inference based on HF, allowing efficient unsupervised end-to-
end training and more accurate latent distribution estimation.
Besides, the well-expressive sequence posterior is also used for
conditional topic latent modeling, which releases the burden
of the topic component as well as drives the LM to take full
advantage of its powerful generative capacity endowed by the
normalizing flow. Empirical results, including language mod-
eling and topic learning evaluations, show clear advantages
of FET-LM compared to previous works across multiple NLP
tasks.
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APPENDIX

We do the mathematical proof of the reconstruction process
in the topic modeling part and the separation of KL divergence
of two modeling parts in this section.

A. Reconstruction Process in the Topic Modeling Part
We assume X is the input text data, ↵ is the document-

level topic parameter, Y is the output of the topic modeling
component. Then the reconstruction of the topic modeling part
is:
p(X | ↵) = p(Y ) =
Z

zt

Z

zs

p(zt)

 
mY

i=1

p(yi | zt)p(zt | zs)p(zs)
!
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=
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=

Z
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Z

zs

p(Y , zs, zt)dzsdzt

=

Z

zt

Z

zs

p(X, zs, zt | ↵)dzsdzt,

(14)

The relation between X and Y is Y = X | ↵. The second
equation above can stand because of the approximation method
of the marginal probability of a word in documents: p(yi |
zt)p(zt | zs)p(zs) = p(yi | zt)p(zt, zs) = p(yi, zs | zt).

B. From the Overall KL to Separate Modes
We will give a more intuitive explanation of the derivation of

KL terms from separate modeling component (sequence and
topic) in FET-LM. The overall KL term of FET-LM model
under the paradigm of two VAEs can be modeled as:

DKL(q(zt, zs | X)kp(zt, zs)), (15)

where we treat two different latent representations as one
and calculate its regularization penalty using KL divergence.
However, Eq.(15) can be factorized into two terms w.r.t. the
sequence and topic latent codes respectively, that is:

DKL(q(zt, zs | X)kp(zt, zs))

= q(zt, zs | X) log [q(zt, zs | X)]� log [p(zt, zs)]

= q(zt, zs | X) log


q(zt, zs,X)
q(zs,X)

· q(zs,X)
q(X)

�

� q(zt, zs | X) log


p(zt, zs)
p(zt)

· p(zt)

�

= q(zt, zs | X){log [q(zt | zs,X)]� log [p(zt | zs)]}
+ q(zs | X){log [q(zs | X)]� log p(zs)}

= q(zs | X)q(zt | zs,X) log
q(zt | zs,X)
p(zt | zs)

+ q(zs | X) log
q(zs | X)
p(zs)

= Eq(zt|X) [DKL(q(zt | X, zs)kp(zt | zs))]| {z }
KL Term in Topic Modeling Component

+ DKL(q(zs | X)kp(zs))| {z }
KL Term in Sequence Modeling Component

.

(16)

By replacing sequence latent variable zs in its posterior with
zs(0) and zs in its prior with zs(K), we can approximate
this decomposition under the modeling process of normalizing
flow, which leads to Eq (11) in the paper. The third equation
in Eq (16) can stand because we replace q(zt, zs | X) with
q(zs | X) in the second term for the third equation. At
last, we discover that the overall KL term of the system is
well approximated by two distinct KL penalties related to
components in the FET-LM model.

C. Generated Topics

For topic word generation, we used the decoder of the topic
modeling part to produce the probability of each token in a
corpora, then sorted words with the highest five probabilities as
top-5 topic word output. We selected nine channels from FET-
LM models with 50 topic latent dimensions. And generated
top-5 topic words from them severally. Results are shown in
Table XII.

D. Style Transfer Generation and Interpolated Sentences

For well-expressive attribute representation spaces, we ex-
pect they contain distinct attributes and can be easily ma-
nipulated. For sentence generation with transferred styles, we
traversed the value in one latent dimension of latent variables
from �10.0 to 10.0 by a step size of 2.0. Results in Table XIII
show a transformation from positive sentiment to relatively
negative (i.e., with negative expressions “n’t been ... twice”,
“overpriced”). For the interpolation task. We used a linear
interpolation strategy, this process can be specified as follows:

1) Given two samples xi, xj from train set.
2) Obtain their sequence latent code and topic latent code

respectively (zs(i), zt(i)), (zs(j), zt(j)).
3) For both types of latent variables we use linear inter-

polation ztype = ztype(i) · (1 � ⌧) + ztype(j) · ⌧ where
ztype 2 {zs, zt} and ⌧ increases from 0 to 1 by a step
size of 0.2.

We can see there is maintenance from the original text key
phrases or structure (e.g., “the company”, “lawmakers are con-
sider”, inverted form) and semantics (e.g., positive, business,
law) as well as a transformation between two given examples.
We can observe smooth and sensible interpolation results for
almost arbitrary input pairs. This demonstrates our FET-LM
model learns meaningful latent spaces.

E. Ablation Study of Discriminator Weight w.r.t. PPL Results

We analysis the effects of hyper-parameters �D,�info. We
conducted experiments with varied �D from [0.0, 0.1, 0.3, 0.5,
0.8, 1.0] in Fig. 6 w.r.t. text perplexity (PPL) and document-
level entropy tasks on APNEWS dataset respectively. We find
that, as the �D increases, the PPL value of FET-LM generally
increases, while the entropy value decreases. This yields a
worse language modeling ability but better topic modeling
ability of our model, also an apparent trade-off between the
model’s PPL and entropy values. Overall, we chose �D = 0.5
with a good trade-off between PPL and entropy for our model.
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TABLE XII
TOP-5 TOPIC WORDS FROM NINE TOPICS GENERATED FROM 50 TOPIC FET-LM MODELS.

Dataset #1 #2 #3 #4 #5 #6 #7 #8 #9

APNEWS

gay iraq 57-year plane tea rain deputies mark museum
marriage soldier 19-year crashed gop rains deputy staff art

anti syria collision miles nomination snow commissioners clinton festival
ruling troops 21-year wildfire democrat unemployment maricopa lead music

congress forces tractor engine challenger storms patrol elections zoo

IMDB

reviewers poorly debut oscar finished toronto happened twice grade
ridiculous cinematography finest terrific remote independent screening yesterday sub

total romance beautifully poorly aged maker makers funniest flicks
considering dialogue stage independent maker oscar camera cable fu

highly directing romance talented pre debut reviewers viewed kung

BNC

yesterday council conservation voice award africa international england environmental
night britain environmental yesterday pounds pacific east cup pollution
today environmental pollution night ref council european voice conservation
young meeting council daily research asia europe britain council

just title species post holder east british league environment

PTB

cost composite mortgages gains futures nov benchmark tuesday nasdaq
fiscal counter adjustable rise traders oct points notes counter

spending volume capped inflation short priced priced october s&p
budget ounce yields orders gains mature treasury september activity
senate pence rise percentage selling dec point oct decline

Yelp15

casino avec massage beers matcha min spa cons rooms
hotels c’est pedicure buffet milk mins tub pros suite
strip des gel tap bagel tip shower buffet amenities
mgm en nail burgers vanilla dirty pool rooms stayed
rooms que polish bartender cupcake 40 massage rental pool

TABLE XIII
TEXT STYLE TRANSFER GENERATION FROM POSITIVE TO SLIGHTLY NEGATIVE BY TRAVERSING LEARNED TOPIC REPRESENTATIONS.

Int. 1 •have been here twice , and i have never had a bad experience . i had the chicken salad with
garlic knots . the salad was delicious ! ! ! ! ! ! ! ! ! ! !

Int. 2 •i have been here twice , and i have never had a bad experience . i had the shrimp taco salad ,
which was delicious . i will be back ! ! ! ! ! ! ! ! ! !

Int. 3 •i have been here twice and have never been disappointed . the food was delicious , the fish
tacos were delicious . i had the shrimp tacos , and the chicken was cooked perfectly .

Int. 4 •i have been to this location twice and have never been disappointed . the service is very
friendly and helpful .

Int. 5 •i have n’t been to this location twice . the <unk>is very nice and helpful . the <unk>is located
in the middle of the strip mall .

Int. 6 •i have n’t been to this location twice . pros : <unk>and <unk>. the <unk>was very nice and
the service was great . i was in the area for a few days and it was n’t a bad experience .

Int. 7 •i have n’t been to this location twice . the <unk>was very nice and the service was great . i
was n’t sure what to expect .

Int. 8 •i have n’t been to this location twice . i would have given a lot of money in the future , but i ’m
not sure why the prices are reasonable .

Int. 9 •i think it ’s a bit overpriced . pros : <unk>:

F. Full Results of BLEU

We used the benchmark tool Texygen [65] to do all the
BLEU-related calculations. We show results of our model only
with or without the discriminator, which we believe is more
important for the token-level optimization. This is because
the mutual information term is directly optimized in the topic
latent space zt, rather than in sequence embedding zs or token
level like the discriminator does. From the full results in Ta-
ble XVI, we can see that our model outperforms all baselines
in test-BLEU metric, yet is only superior to other models
on self-BLEU under B-2 in major cases. This phenomenon
demonstrates that the proposed model is qualified to produce
texts with high quality, but has difficulty in generating texts

with high diversity. Nevertheless, the overall metric BLEU-F1
shows the superiority of the FET-LM model in a well-weighted
trade-off between text quality and diversity.
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TABLE XIV
GENERATED SENTENCES BY INTERPOLATING LATENT CODES.

Type Sentences
Org. I •the company and its executives deny the charges

Rec. I •the company had been working with the state and
financial services and the government ’s plan

Int. 1 •the company had no comment on the other hand
and the state department said

Int. 2 •the company wants to keep the entire computer
system says the agency

Int. 3 •these guys are a good idea he says

Int. 4 •these guys is an important and financial services
he says

Rec. II •you have a lot more efficient than he says
Org. II •our doors are open an nbc spokesman says

TABLE XV
GENERATED SENTENCES BY INTERPOLATING LATENT CODES.

Type Sentences

Org. 1
•lawmakers are considering restrictions on
harvesting a hawaii seafood <unk>
known as <unk>.

Rec. 1
•lawmakers are considering a bill that would
link at least two dozen dogs dead inside a
local airport .

Int. 1
•lawmakers are considering a bill that would
link the south carolina town of marine corps
on sunday night .

Int. 2
•the state ’s government will be held on a las
vegas strip - based weapons ring that killed in
the u.s . house , but it does n’t have a chance .

Int. 3
•the city of a florida man who died after being
held by a fellow military veterans affairs in the
nation ’s largest valley .

Int. 4 •the man who died in a shooting that killed
a tennessee valley business .

Rec. 2
•the man who shot a man in a downtown
philadelphia house is now that he has received
a plea deal .

Org. 2
•a man who barricaded himself in his
omaha home has surrendered without
incident .

Fig. 6. Ablation analysis of �D w.r.t. text perplexity (PPL) and document-
level entropy on APNEWS dataset.
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